Dynamical Casimir effect in a superconducting coplanar waveguide.
نویسندگان
چکیده
We investigate the dynamical Casimir effect in a coplanar waveguide (CPW) terminated by a superconducting quantum interference device (SQUID). Changing the magnetic flux through the SQUID parametrically modulates the boundary condition of the CPW, and thereby, its effective length. Effective boundary velocities comparable to the speed of light in the CPW result in broadband photon generation which is identical to the one calculated in the dynamical Casimir effect for a single oscillating mirror. We estimate the power of the radiation for realistic parameters and show that it is experimentally feasible to directly detect this nonclassical broadband radiation.
منابع مشابه
Photon generation in an electromagnetic cavity with a time-dependent boundary.
We report the observation of photon generation in a microwave cavity with a time-dependent boundary condition. Our system is a microfabricated quarter-wave coplanar waveguide cavity. The electrical length of the cavity is varied by using the tunable inductance of a superconducting quantum interference device. It is measured at a temperature significantly less than the resonance frequency. When ...
متن کاملDynamical Casimir effect in superconducting microwave circuits
We theoretically investigate the dynamical Casimir effect (DCE) in electrical circuits based on superconducting microfabricated waveguides with tunable boundary conditions. We propose implementing a rapid modulation of the boundary conditions by tuning the applied magnetic flux through superconducting quantum-interference devices that are embedded in the waveguide circuits. We consider two circ...
متن کاملUltra-Strong Optomechanics Incorporating the Dynamical Casimir Effect
We propose a superconducting circuit comprising a dc-SQUID with mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or non-degenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon, ultra-strong coupling regime, w...
متن کاملMiniaturized High-Temperature Superconducting Microstrip and Coplanar Waveguide Filters
Two types of miniaturized high-temperature superconducting filters are described in this paper. The first type is developed by using small-sized microstrip spiral resonators, and the second type by coplanar waveguide quarter-wavelength resonators. The filters have significantly reduced size compared with many previous HTS filters. They are designed by employing an electromagnetic simulator in c...
متن کاملMiniaturization of superconducting coplanar waveguide bandpass filters by cross coupling
For more size reduction of the high temperature superconducting coplanar waveguide (CPW) bandpass filter (BPF), we introduce the design method of the meanderline CPW quarter-wavelength resonator BPF. The exact admittanceand susceptance-inverters are calculated by using the 2.5-dimensional electromagnetic field simulator. The prototype YBCO miniaturized BPF (center frequency =10GHz, n=3, band wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 103 14 شماره
صفحات -
تاریخ انتشار 2009